

Since 1954, light when you need it

C ϵ

AND APPROVALS
QUALITY ASSURANCE

Today, there is a practical and viable alternative to the traditional way of controlling domestic and commercial lighting.

Economy and flexibility

Achieving the control of lighting where there is more than one control switch, particularly where they are located some distance from one another, has always been complicated and costly. A second control switch requires 3 additional wires, whilst every intermediate switching location requires no less than 4 wires.
In such cases, utilising an impulse (or step) relay has many advantages;

- designing the system is simpler
- it is more easily expanded
- installation costs are noticeably reduced.

Simplicity

Using 2-wire pushbuttons to control the coil of a centrally located impulse relay, which in turn controls the lights, greatly simplifies the wiring normally associated with one-way, twoway and intermediate switches. The 2-wire coil "command circuit" is easily extended to as many lighting control locations as needed, and can use smaller and neater conductors
(typically $0.5 \mathrm{~mm}^{2}$ - as permitted by National regulations), since they need only to carry the load of the relay coil (typically $20 \ldots 600 \mathrm{~mA}$). The power circuit to the lights should of course be of sufficient capacity, but instead of following the usual route of a traditional system to all the switches, it needs to run only to the impulse relay and then to the lights.

Safety

Where necessary, and particularly for safety reasons, a transformer can be used to power the command circuit at a voltage lower than the supply voltage - impulse relay coils being available in several AC or DC voltages. No other component offers this enhanced safety through separating the command from the power circuit, nor the savings derived from added versatility and simplification of the system.

Versatility

In addition to the technical advantages already described, a number of versatile mounting modes for the relay are possible; ranging from a normal junction box, screw fixing, and 35 mm rail (EN 60715) mounting systems.

Conforming to International Standards

In Europe, the Low Voltage European Directive 2014/35/EU and successive amendments state that, as well as using recognised technicians to carryout the installation, the materials and components used in the system should adhere to International and National standards. It is particularly important that this can be verified with Declarations of Conformity citing the appropriate standards, and certification documents from the appropriate National certification organisation.

FINDER impulse relays are designed and constructed in compliance with EN/IEC standards, depending on type, have been officially certified by the appropriate standards authorities with respect to performance and quality, being subject to both Type Testing and ongoing periodic QC testing.

APPROPRIATE STANDARDS

EN 61810-1: Electromechanical Elementary Relays - Part 1: General and safety requirements
EN 60669-1: Switches for household and similar fixed electrical installations. General requirements 64-8: Electrical Systems.

Noise level

FINDER is engaged in continual research into the reduction of the acoustic noise generated by the mechanical action of operating the contacts.

Improved with respect to earlier versions of impulse relay, the current 20,26 Series and 27 series create no more noise than a normal switch (about 20 dB), whilst the SILENT IMPULSE RELAY "13.81" and "13.91" generates no noise noticeable above the general background noise where it is installed.

The Switching Function fundamentally defines the particular sequence in which the step relay contacts open and close, and the number of "steps" before this sequence repeats itself. The digit in the fourth position of the Finder part number denotes the Switching Function.

Relay type	Number of Steps	Switching Sequence			
		I	2	3	4
xx.x1	2	1	4		
xx.x2	2	1_{1}^{1}	44		
xx.x3	2	14	$4{ }^{1}$		
xx.x4	4	$1_{1}^{1} 1$	44	$1_{1}^{1} 4$	$4{ }^{1}$
xx.x5	4	ν^{\prime}	$)^{1} 4$	$4{ }^{1}$	44
xx.x6	3	$1^{1} 1$	14	44	
xx.x8	4	$1^{1} 1$	$4{ }^{1}$	$1^{1} 1$	14

Switching function code

The 1 pole 2 step switching function $\mathrm{xx} . \mathrm{x} 1$ will allow the $\mathrm{On} /$ Off control of a single lighting zone.
The 2 pole types allow the independent control of 2 lighting zones. The specific lighting sequence will depend on the specific Switching Function code chosen.

Note:

- Not all Finder Step relays are available with all the possible alternative Switching functions.
- The Switching function code generally has the same meaning for all Finder step relays, although there are a few minor anomalies - so in practice refer carefully to the data sheet for the specific relay.

For example:
The Switching Function code " 6 " (2 pole, 3 -step sequence) can be implemented with relay types 20.26-26.06-27.06, but the latter has coil and contact circuits that are common to each other.

Relay System Wiring - Single Zone On/Off control - Using single relay (Function code " 1 ") and simple wiring Possible relay types, 20.21-26.01-27.01-27.21-13.81-13.91

Comparing both systems, even for the simplest uses, the relay system offers advantages.
Only two wires are required for the "command circuit", and they can be of a smaller cross section (0.5 mm). Whereas, in a traditional system the conductors have to be sized
to take the load current and are far more numerous. From an economic viewpoint, not only are there savings in material costs, but also less time is taken by the electrician to install the relay system. This system is also much easier to modify or extend.

Traditional System Wiring - Single Zone On/Off control - Using multi-pole switches and multiple wiring

Wiring Schematic - Relay system
Single Zone On/Off control - Function code "1" (1 pole 2 step sequence) relay

Example shows relay type 27.01.

Wiring Schematic - Traditional system - Single Zone On/Off switching - Multi-pole switches and wiring

Relay System Wiring - 2 Lighting Zones, 3 sequence On/Off control - Using single relay (Function code " 6 ") and simple wiring Possible relay types, 20.26-26.06-27.06-27.26

For more complex functions such as the one above, the relay system is self evidently simpler and more economical to install. Savings of typically 40% can be achieved.
The function of this particular application is to offer 3-step
sequence control over two circuits, or lighting "zones", using a single impulse relay with 2 independent contacts.
Successive operation of any of the push buttons sequences the lighting through all three permutations.

Traditional System Wiring - 2 Lighting Zones - Using mullti-pole switches and complex wiring

Zone 1

Wiring Schematic - Relay system - 2 Zone On/Off switching - Function code "6" (2 pole 3 step sequence) relay

Example shows relay type 27.06.

Wiring Schematic - Traditional system-2 Zone On/Off switching - Multi-pole switches and complex wiring

Introduction to relay controlled	
lighting systems	page 1... 12
10 Series - Light dependent relays	page 14... 19
11 Series - Modular light dependent relays	page 20... 27
12 Series - Time switches	page 28... 37
13 Series - Electronic step relays	page 38... 49
14 Series - Electronic staircase timers	page 50... 58
Wiring diagram showing types :	
27.01, 27.21, 26.01, 13.81, 13.91, 15.51	page 59
15 Series - Dimmers	page 60...69
18 Series - PIR movement detectors	page 70... 85
19 Series - Override \& Status indicating modules	page 86... 89
1C Series - Room chonothermostats	page 90... 93
1T Series - Room thermostats	page 94... 97
20 Series - Modular step relays	page 98... 101
22 Series - Modular contactors	page 102... 105

26 Series	- Step relays	e 106... 109
27 Series	- Step relays	...
4C Series	- Relay interface mod	age 114
48 Series	- Relay interface	ge 115
58 Series	- Relay interface modules	page 116
70 Series	- Line monitoring relays	(17... 121
72 Series	- Level control relays for conductive liquids	
Type	Priority change relay	age 130... 131
Type 72	/B1 - Float switches	age 132... 133
77 Series	- Modular Solid State Relay	page 134
78 Series	- Switch mode po	page 135... 137
7E Series	- Energy meters	page 138... 145
7P Series	- Surge Protection Device	page 146... 159
80 Series	- Modular timers	page 160... 167
81 Serie	- Modular ti	age 168... 170
84 Series	Multi-function SM	ge 171... 1

Double output - 2 NO 16A for Live and Neutral switching

- 2 NO, 16 A 230 V AC
- Supply voltage: AC
- For pole or wall mounting

Italian Patent "light feedback compensation" innovative principle

Type 10.41

Single output-1 NO 16A for Live switching
-1 NO, 16 A 230 V AC

- Supply voltage: AC
- For pole or wall mounting

Italian Patent "light feedback compensation" innovative principle

Internal connection

Type 10.42

Two independent outputs

- 2 NO, 16 A 230 V AC
- Supply voltage: AC
- For pole or wall mounting

Type 10.51
Single output-1 NO 12A

- 1 NO, 12 A 230 V AC
- Supply voltage: AC
- For pole or wall mounting

Italian Patent "light feedback compensation" innovative principle

Internal connection

Type 10.61

- Fixed sensivity 10 lux ($\pm 20 \%$)
- Prewired with silicone wire, 500 mm length
- 1 NO, 16 A 230 V AC
- Supply voltage: AC
- Mounting on street light body

Advantage of the "light feedback compensation" principle

Light dependent relay where the lighting being controlled does not influence the light level seen by the sensor

Correct functioning - provided the sensor can be shielded from the effects of the controlled lighting switching On and Off

$$
\begin{aligned}
& \text { Traditional light dependent } \\
& \text { relay where the lighting being } \\
& \text { controlled influences the light } \\
& \text { level seen by the sensor } \\
& \hline
\end{aligned}
$$

Incorrect functioning where the lamps cycle between On and Off, because their effect is being detected by the sensor

Type 10.32, 10.41 and 10.51 light
dependent relay with
"light feedback compensation"

The innovative principle of "light feedback compensation" avoids the annoying and damaging effects of the lamps repeatedly "hunting" between On and Off, due to poor installation

Ambient light level as measured by the light dependent relay's integral sensor. Ambient light + controlled light level as measured by the light dependent relay's integral sensor.

Notes

1. It is good practice to try to achieve a correct installation where the light emitted from the lamp(s) does not influence the light level seen by the sensor, although the "light feedback compensation" principle will help when this is not fully achievable. In this case it should be appreciated that the "light feedback compensation" principle may delay slightly the time of Switch Off - beyond the ideal.
2. The compensation principle is not effective where the combined effect of the ambient light and the controlled lighting exceeds 120 lux.
3. The 10.32 and 10.41 types are compatible with gas discharge lamps that attain full output within 10 minutes, since the electronic circuit monitors lamps' light output over a 10 minutes period to achieve a true assessment of its contribution to the overall lighting level.

Energy saving in a new light !

Type 11.31

17.5 mm width

- 1 NO, 16 A 250 V AC
- Supply voltage: AC
- 35 mm rail (EN 60715) mount

Accessories

Light sensor
Type 011.02

- Protection category: IP 54

Flush-mounted light sensor Type 011.03

Protection category: IP 66/67

- Cadmium free
- Non polarized
- Double insulated with respect to light dependent relay supply

Type 11.41
"zero hysteresis", 4 position selector

- 1 CO, 16 A 250 V AC
- Supply voltage: 230 V AC
- 35 mm rail (EN 60715) mount

European patent "Zero hysteresis" for energy saving Italian patent "Light feedback compensation"principle

Accessories

Light sensor

Type 011.02

- Protection category: IP 54
- Cadmium free
- Non polarized
- Double insulated with respect to light dependent relay supply

Flush-mounted light sensor Type 011.03

Protection category: IP 66/67

Type 11.42

- 2 independent outputs
- 2 individual lux settings
- 4 position selector
- 1 CO + 1 NO, 12 A 250 V AC
- Supply voltage: 230 V AC
-35 mm rail (EN 60715) mount

Accessories

Light sensor

Type 011.02

- Protection category: IP 54
- Cadmium free
- Non polarized
- Double insulated with respect to light dependent relay supply

Flush-mounted light sensor Type 011.03

Protection category: IP 66/67

Type 11.91

Light dependent relay + time switch Auxiliary output (light only dependent) to power optional 19.91 power module -1 CO (16 A 250 V AC) +1 aux output

- Supply voltage: 230 V AC
-35 mm rail (EN 60715) mount
Italian patent "Light feedback compensation" principle

Accessories

Light sensor

Type 011.02

- Protection category: IP 54

Flush-mounted light sensor Type 011.03

Protection category: IP 66/67

- Cadmium free
- Non polarized
- Double insulated with respect to light dependent relay supply

Type 19.91.9.012.4000

Power module 16 A

17.5 mm width

- 1 CO 16/30 A 250 V AC
- Supply voltage: DC
- 35 mm rail (EN 60715) mount

Accessories

2-pole connector Type 011.19

For direct connection of 11.91 auxiliary output (Y1-Y2) to 19.91 supply (A1-A2)

A solid state output at terminals $\mathrm{Y} 1-\mathrm{Y} 2$ is provided (rated 12 V DC, 80 mA 1 W max.): this can be used with the power module 19.91.9.012.4000 connected by the dedicated 011.19 connector.

L

Advantage of the "Zero hysteresis" patented circuit: ensures reliable switching without wasting energy

Brightness of the natural light

The NO of the light dependent relay is closed (light is switched on)

Advantage of the "light feedback compensation" principle (Italian Patent)

 avoids the effect of the lamps repeatedly "hunting" between On and Off, due to poor installationLight dependent relay where the lighting being controlled does not influence the light level seen by the light sensor

Traditional light dependent relay where the lighting being controlled influences the light level seen by the light sensor

Type 11.41 and 11.91 light dependent relay with "light feedback compensation"

Correct functioning - provided the light sensor can be shieldedfrom the effects of the controlled lighting switching On and Off

Incorrect functioning where the lamps cycle between On andOff, because their effect isbeing detected by the light sensor

The innovative principle of "light feedback compensation" avoids the annoying and damaging effects of the lamps repeatedly "hunting" between On and Off, due to poor installation

Ambient light level as measured by the light dependent relay's light sensor
Ambient light + controlled light level as measured by the light dependent relay's light sensor

Notes

1. It is good practice to try to achieve a correct installation where the light emitted from the lamp(s) does not influence the light level seen by the light sensor, although the "light feedback compensation" principle will help when this is not fully achievable. In this case it should be appreciated that the "light feedback compensation" principle may delay slightly the time of Switch Off - beyond the ideal.
2. The compensation principle is not effective where the combined effect of the ambient light and the controlled lighting exceeds a maximum value (200 lux for the $11.91,160 / 2,000$ lux for standard/high range of the 11.41).
3. The 11.41 and 11.91 types are compatible with gas discharge lamps that attain full output within 10 minutes, since the electronic circuit monitors lamps' light output over a 10 minute period to achieve a true assessment of its contribution to the overall lighting level.

Mechanical daily time switch

35.8 mm width

- 1 CO, 16 A 250 V AC
- Supply voltage: AC
- 35 mm rail (EN 60715) mount

Type 12.11
Mechanical daily time switch
17.6 mm width

- 1 NO, 16 A 250 V AC
- Supply voltage: AC
- 35 mm rail (EN 60715) mount

Type 12.31
Mechanical daily or weekly time switch $72 \times 72 \mathrm{~mm}$

- 1 CO, 16 A 250 V AC
- Supply voltage: AC
- Front panel mounting

Type 12.71
Electronic digital weekly time switch,
17.6 mm width

- 1 CO, 16 A 250 V AC
- Supply voltage: AC or AC/DC - 35 mm rail (EN 60715) mount

Accessories

PC programming kit Type 012.90

Type 12.51
Digital (analogue-style) time switch, daily/weekly programming

35.8 mm width

- 1 CO, 16 A 250 V AC
- Supply voltage: 230 AC
- 35 mm rail (EN 60715) mount

Programmable from a smartphone using NFC (Near Field Communication) connectivity.

Type 12.81 - Digital Astro-switch

- Astro program: calculation of sunrise and sunset times through date, time and location coordinates
- Location coordinates easily settable for most European countries through post codes
- 35.8 mm width
- 1 CO, 16 A 250 V AC
- Supply voltage: 230 V AC
- 35 mm rail (EN 60715) mount

Programmable from a smartphone using
NFC (Near Field Communication) connectivity.

New user App for simple, guided programming

L

Type 12.61
1 CO, 16A 250V AC

Type 12.62
2 CO, 16A 250 V AC

Digital weekly time switch

35.8 mm width

- Supply voltage: 230 AC
- 35 mm rail (EN 60715) mount

Programmable from a smartphone using NFC (Near Field Communication) connectivity

Wiring for Single Pole Type 12.61 (and Type 12.A1)

Weekly Astro time switch

- Astro program: calculation of sunrise and sunset times through date, time and location coordinates
- Location coordinates easily set for most European countries through post codes
- 35.8 mm width
- Supply voltage: 230 AC
- 35 mm rail (EN 60715) mount

Programmable from a smartphone using
NFC (Near Field Communication) connectivity.
 for simple, guided programming

Leave it to your smartphone and programming your Astro time switch is done!

Step wiring diagram

Monostable wiring diagram

Type 13.11
Call \& Reset Relay - 1 Pole

- 1 CO, 12 A 250 V AC
- Supply voltage: AC
- 35 mm rail (EN 60715) mount
* If using a buzzer that is not continuously rated limit the energization period with an additional timer.

Type 13.12

Call \& Reset Relay - 2 Pole

- 1 CO + 1 NO, 8 A 250 V AC
- Supply voltage: AC
- 35 mm rail (EN 60715) mount
* If using a buzzer that is not continuously rated limit the energization period with an additional timer.

21-24

Type 13.31 Electromechanical monostable relay

- 1 NO, 12 A 250 V AC
- Supply voltage: AC or DC
- For mounting within residential switch boxes

Type 13.61.0.024.0000
Multifunction step/monostable relay with reset command
Reset feature, for centralized off command
Set feature, for centralized on command

- 1 CO, 16 A 250 V AC
- Supply voltage: $12 . . .24 \mathrm{~V}$ AC/DC
- 35 mm rail (EN 60715) mount

Function set through front selector:
(RM) Monostable

(IT) Timing step relay

(RI) Step relay

R Light ON

13.61.0.024.0000-4 wire connection

Type 13.61.8.230.000 Multifunction step/monostable relay with reset command Reset feature, for centralized off command

- 1 NO, 16 A 250 V AC
- Supply voltage: 110... 240 V AC
- 35 mm rail (EN 60715) mount

Function set through front selector:
(RM) Monostabile

(IT) Timing step relay

(RI) Step relay

Light ON

Type 13.61.8.230.0000-Examples of multiple 4 wire connection with centralized reset push button

Type 13.81 - Electronic step relay

- 1 NO, 16 A 230 V AC
- Supply voltage: AC
- 35 mm rail (EN 60715) mount

3 wire connection
L

4 wire connection

Functions:
(IT) Timing step relay

(RI) Step relay

Operating mode setup for type 13.91

13.91-3 wire connection

13.91-4 wire connection

illuminated
push buttons

Type 14.01

- 1 NO, 16 A 230 V AC
- Compatible with movement detectors 18 Series
- Supply voltage: AC
- 35 mm rail (EN 60715) mount

Function set through front selector:

(ME) Staircase timer + Staircase maintenance
(BP) Staircase timer with early warning

(MP) Staircase timer with early warning + Staircase maintenance
(IT) Timing step relay

(RI) Step relay

(IP) Timing step relay with early warning

Light ON

14.01-3 wire connection

14.01-4 wire connection

1 = Function selector
2 = Time delay adjustment potentiometer
3 = LED

Type 14.71

- 1 NO, 16 A 230 V AC
- Compatible with movement detectors 18 Series
- Supply voltage: AC
- 35 mm rail (EN 60715) mount

Functions:

(ㄴ) Staircase relay

Staircase maintenance
(combined with staircase relay function)

Light ON

Wiring diagrams - 14.01 or 14.71 without Staircase maintenance function, triggered by 18 Series PIR movement detector.

3 wire connection
(with 18.21.8.230.0300 or 18.31.8.230.0300 only)

L

4 wire connection
(with 18.21.8.230.0300 or 18.31.8.230.0300 only)

Wiring diagrams - 14.01 or 14.71 without Staircase maintenance function, triggered by 18 Series PIR movement detector.

4 wire connection
(with 18.01.8.230.0000 or 18.11.8.230.0000 only)

Functions:

Staircase relay

"Staircase maintenance" function

Type 14.81

- 1 NO, 16 A 230 V AC
- Supply voltage: AC
- 35 mm rail (EN 60715) mount

3 wire connection
L

(push button configuration required as per the Installation manual)

Type 14.91

- 1 NO, 16 A 230 V AC
- Supply voltage: AC
- 35 mm rail (EN 60715) mount

Functions:

Signal ON pulse

For informations see:
Type 13.81 - page 47 Type 13.91 - page 48, 49 Type 15.51 - page 64, 65 Type 15.91 - page 68, 69 Type 26.01 - page 106, 107 Type 27.01 - page 110 Type 27.21 - page 112

Type 15.10-Master Dimmer

- 4 fuctions
- Up to 15 illuminated push buttons can be connected
- Supply voltage 110... 230 V AC

Can also control directly electronic transformers requiring at $0-10 \mathrm{~V} / 1-10 \mathrm{~V}$ input signal

Type 15.11 - Slave Dimmer

- Slave Dimmers can be controlled by a Master Dimmer or by the 0-10 V output from a building management system (BMS), or by rotary 0-10 V regulators
- The maximum loads that can be switched are:
- Halogen lamps: 400 W
- Toroidal electromagnetic transformers for LV halogen: 400 W
- Dimmable compact fluorescent uorescent (CFL): 100 W
- Dimmable 230 V LED: 100 W
- Dimmable electronic transformers for LV LED: 400 W
- Supply voltage 230 V AC

Type 15.10
Functions selectable with front rotary selector:
(1) Operating mode without memory

(M) Operating mode with memory

(M) ${ }^{\text {O }}$ Operating mode with memory (for CFL Lamp)

(BP) Staircase relay with early warning
BP

MASTER DIMMER TYPE 15.10 AND SLAVE DIMMER TYPE 15.11 It is recommended that the Master controls from one to a maximum of 32 Slave units.
The push buttons (including illuminated push buttons Max. 15) serve as the ON/OFF (momentary push), or when pressed for a longer time they adjust the brightness level. Each Slave can drive a different load type.

MASTER DIMMER + 0-10 V ELECTRONIC TRANSFORMER OR BALLAST

Using only the Master Dimmer it is possible to control electronic transformers or ballasts with a $0-10 \mathrm{~V} / 1-10 \mathrm{~V}$ input (observing correct polarity). For $1-10 \mathrm{~V}$ applications it is suggested to supply the Ballast Live from terminal 14. This will ensure that the supply to the Ballast is cut-off for a signal < 1 V .
Note: Check that the maximum Peak Current of the Ballast does not exceed the 30 A 230 V AC rating of terminal 14. Use a contactor or power relay to switch loads exceeding this value.

BMS 0-10 V OUTPUTS + SLAVE DIMMERS In the case of Home Automation or Building Automation systems you can use just the Slave Dimmer Type 15.11 directly controlled by the 0-10 V output of the building management system (BMS), or by 0-10 V rotary regulators.

If the lighting load comprises low voltage halogen lamps fed through either electromagnetic or electronic transformers, then do not connect more than one transformer per 15.51 dimmer.

Type 15.51

- Maximum lamp load 400 W 230 V AC
- Supply voltage: AC
- Panel mount

Operating mode setup

On 15.51 operating mode 1 or 3 (with memory) is preset, but it is possible to change it using the following sequence:
a) remove the supply voltage;
b) press the control button;
c) apply the supply to the relay, keeping the button closed for 3 second;
d) on button release, the light will flash twice to indicate the selection of operating mode 2 or 4 , or flash once for operating mode 1 or 3.
Repeating the above steps will alternately change between operating modes.

Functions (Type 15.51.8.230.0400)

Operating mode 1 (with memory): the previous light level is memorized.

Long control pulse: The light level is progressively raised or lowered through a maximum of 10 incremental steps.

Short control pulse: Alternately switches between On and Off. When switching On, the light level assumes the value set during the previous On state.

Operating mode 2 (without memory): on switch off, the light level is not memorized.

Long control pulse: The light level is progressively raised or lowered through a maximum of 10 incremental steps.

Short control pulse: Alternately switches On or Off between the maximum light level and the off state.

Functions (Type 15.51.8.230.0404)

Operating mode 3 (with memory): the previous light level is memorized.

Long control pulse: The light level is progressively raised or lowered.

Short control pulse: Alternately switches between On and Off. When switching On, the light level assumes the value set during the previous On state.

Operating mode 4 (without memory): on switch off, the light level is not memorized.

Long control pulse: The light level is progressively raised or lowered.

Short control pulse: Alternately switches On or Off between the maximum light level and the off state.

3 wire connection
Type 15.81

- Maximum lamp load 500 W 230 V AC
- Compatible with energy saving (CFL or LED) dimmable lamps and most types of transformer/ballast drivers
- Supply voltage: 230 V AC
- 35 mm rail (EN 60715) mount

4 wire connection

100\%			Operating mode without memory: at switch-off, the light level is not m Long control pulse: The light level is progressively raised or lowered in linear way. The lowest value depend on the "minimum dimming level" regulator setting. Short control pulse: Alternately switches between On and Off between the maximum light level and the off state.	
- 『				
Minimum			Long control pulse: The light level is progressively raised or lowered in linear way. The lowest value dependent on the "minimum dimming level" regulator setting.	
0		$1 \quad 1$	Short control pulse: Alternately switches between On and Off.	
_工				On, the light level assumes the value set during state.
Type of load		Selector setting		Regulator setting
		With memory (M)	Without memory (M)	
- Incande - 230 V h - 12/24 V with ele	cent lamps ogen lamps alogen lamps ronic transformer/ballast			It is suggested to set the "minimum dimming level" at the lowest value, so that the complete dimming range is available. But if it is necessary to avoid too low a level of illumination, a higher value can be set.
- Dimmab fluores - Dimmab	e compact t lamps (CFL) LED lamps			It is suggested to initially set the "minimum dimming level" at an intermediate value and then if necessary, readjust for a level found to be compatible with the lamp being used.
- $12 / 24 \mathrm{~V}$ or E-cor transfor	alogen lamps with toroidal electromagnetic er			It is suggested to set the "minimum dimming level" at the lowest value, so that the complete dimming range is available. But if it is necessary to avoid too low a level of illumination, a higher value can be set.

Type 15.91

- Power max.: 100 W 230 V AC
- Supply voltage: 230 V AC
- Suitable for residential wall box mounting

3 wire connection

4 wire connection

Functions (type 15.91.8.230.0000)

Operating mode setup

On 15.91 operating mode 4 (without memory) is preset, but it is possible to change it using the following sequence:
a) remove the supply voltage;
b) press the control button;
c) apply the supply to the relay, keeping the button closed for 3 second;
d) on button release, the light will flash twice to indicate the selection of operating mode 3, or flash once for operating mode 4. Repeating the above steps will alternately change between operating modes.

Operating mode 3 (with memory): the previous light level is memorized.

Long control pulse: The light level is progressively raised or lowered.
Short control pulse: Alternately switches between On and Off. When switching On, the light level assumes the value set during the previous On state.

Operating mode 4 (without memory): on switch off, the light level is not memorized.

Long control pulse: The light level is progressively raised or lowered.
Short control pulse: Alternately switches On or Off between the maximum light level and the off state.

Type 18.01
Internal installations
Protection category IP 40

Type 18.11
External installations
Protection category IP 54

- 1 NO, 10 A 230 V AC
- Supply voltage: $120 . . .230 \mathrm{~V} \mathrm{AC}$
- For wall mounting

Sensing area
18.01, 18.11 - Wall mounting

Side view
18.01, 18.11 - Ceiling mounting

Type 18.21 Output connected to supply voltage
Type 18.21.x.xxx. 0300 Output with potential free contact
Surface mounting
Type 18.31 Output connected to supply voltage
Type 18.31.x.xxx. 0300 Output with potential free contact
Recessed mounting
Type 18.31.x.xxx. 0031 Recommended for applications with high ceilings (up to 6 meters)
Light ON time after last detection ($30 \mathrm{~s} . . .35 \mathrm{~min}$)

Internal ceiling installation

Protection category IP40

- 1 NO, 10 A 230 V AC
- Supply voltage: $120 \ldots 230 \mathrm{~V}$ AC (for types $18.21,18.31$) $24 \mathrm{~V} \mathrm{AC/DC}$ (for types 18.21/31-0300 only)

Sensing area

18.21, 18.31

Ceiling mounting

18.31... 0031

Internal ceiling installation, surface mounting

Movement and presence detector
18.31... 0031

High ceiling installations

Wiring diagram - Parallel connection Type 18.01/11
Wiring diagram
Parallel connection Type 18.21/31

Note: conform to the polarity indicated for Phase and Neutral

Wiring diagram - Parallel connection Type 18.01/11 and Type 18.21/31

Note: conform to the polarity indicated for Phase and Neutral

180° horizontal rotation. 30° vertical rotation.

Suspended ceiling mounting and recess mounting version

Surface version

Type 18.41

Specifically for corridors up to 30 meters in length
Applications: hotel and office corridors, transit areas
Internal ceiling installation
Protection category IP40

- 1 NO, 10 A 230 V AC
- Supply voltage: 110... 230 V AC

Suspended ceiling mounting

 and recess mounting version
Surface version

Type 18.51

High sensitivity and uniform detection
Applications: offices, schools, zones of low activity

Internal ceiling installation Protection category IP40

- 1 NO, 10 A 230 V AC
- Supply voltage: 110 ... 230 V AC

Suspended ceiling mounting and recess mounting version

Through the use of Bluetooth LE (Low Energy) technology programming the detector's operating characteristics can be easily and conveniently done using an Android or iOS smartphone.
After installing the 18.51, simply download the Free App Finder Toolbox from Google and Apple's official stores and set all the required parameters.

Finder Toolbox

Type 18.51.8.230.B300
PIR movement and presence detector with Bluetooth

Internal ceiling installation Protection category IP40

- 1 NO, 10 A 230 V AC
- Supply voltage: 110... 230 V AC

Android, Google Play and the Google Play logo

Type 18.5D
PIR Movement and presence detector with DALI. Three selectable functions.

```
Internal ceiling installation
Protection category IP40
- 1 NO, 10 A 230 V AC
- Supply voltage: \(110 . . .230\) V AC
```


Comfort - Daylight-linked constant light level control
Adjusts to maintain a constant brightness level considering the detection of movement and the level of daylight - increasing or decreasing the power of the artificial light as appropriate.
Suitable for small offices, classrooms or workplaces. This allows considerable energy saving while maintaining a comfortable level of illumination.

Courtesy

ON/OFF control with early warning + courtesy light level If the brightness level is lower than the set value, artificial light is maintained at 10% power, guaranteeing a minimum level of illumination at all times. When movement is detected, the power of the lamps is raised to 100%. There is an early warning of any reduction from the 100% power level by a reduction to 50% for 20 seconds.
Suitable for common areas, lobbies, corridors, elevator zones.

Simplicity

ON/OFF control with early warning
Works as a simple movement detector, activating the lamps at 100\% power. But provides an early warning of the next shutdown with a power reduction to 50% for 20 seconds.
Avoids a sudden total shutdown of lighting.

Suspended ceiling mounting

 and recess mounting version
Surface version

Type 18.51.8.230.0040
Possibility to connect external push-button to force the output state. Dynamic light compensation Applications: offices, schools, zones of low activity

Internal ceiling installation Protection category IP40

- 1 NO, 10 A 230 V AC
- Supply voltage: 110... 230 V AC

Special function Type 18.51.8.230.0040
External push-button

A control pulse on the push-button inverts the status of the output relay, until the timing after the last movement detected has elapsed.

Dynamic Light Compensation

By incorporating Finder's Patented "light feedback compensation" principle, the $18.51 . . .0040$ is able to calculate the artificial light contributed by the lamps controlled by the output relay. In effect, this means the $18.51 \ldots 0040$ is able to continuously monitor the natural ambient light level, even when the output is On. As a consequence, whenever the natural light level exceeds the threshold setting the output is forced Off.
This can significantly minimises the time the lighting is On, particularly where there is a high level of traffic - and cost savings can be considerable. This is an advance over other types of movement detectors, which are unable to identify the natural ambient light level when the output is On and so can only turn Off after the time delay that follows the last detected movement. In busy areas this may mean that the movement detector is being continuously re-triggered and maintained in the On state, even though the natural light level has long risen above the threshold.

Wall mounting

Type 18.61
Wall mounting compatible with 60 mm box
and 2 or 3 module box
Wide angle of survey $\left(180^{\circ}\right)$
Internal ceiling installation
Protection category IP40

- 1 NO, 10 A 230 V AC
- Supply voltage: $110 . . .230$ V AC

Light when you need it, wherever you need it.

New generation of movement and presence detectors - 18 Series
For internal or external installations. Adjustable Light ON Time .
Adjustable ambient light intervention threshold. Push-in terminals.

Type 19.21.0.024.0000-Auto/Off/On output module 10 A

Feedback contact

11.2 mm width

- 1 CO, 10 A 250 V AC
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

Type 19.41.0.024.0000-Override module - Auto/Off/Hand 1 feedback output contact

LED indicator

17.5 mm width

- 1 CO, 5 A 250 V AC
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

Type 19.42.0.024.0000-Override module - Auto/Off/Low/High Low and High output contacts - 1 feedback output contact

LED indicator

35 mm width

- 2 NO, 5 A 250 V AC
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

Type 19.50.0.024.0000 - Analogue override module - Auto/Hand (0...10)V 1 feedback output contact

LED indicator

17.5 mm width

- 1 CO, 5 A 250 V AC
- Supply voltage: 24 V AC or DC
-35 mm rail (EN 60715) mount

Type 1C.81.9.003.0107
White RAL 9010

Type 1C.81.9.003.2107
Metallic Anthracite

Chrono Touch Screen Weekly Chronothermostat

- Display touch screen with ultra white LED backlighting
- 1 contact output 5 A/250 V AC
- Power supply: two alkaline 1.5 V AAA
- ECO1 \& ECO2 power-saving features, supervisory control and PIN code

- Minimum interval setting 30 minutes
- 3 programmable temperature thresholds
- Surface mounting over 3 module wall box

Programmable from a smartphone using NFC (Near Field Communication) connectivity.
 guided programming

Leave it to your smartphone and programming your chronothermostat is done!

Type 1C.71.9003.0007 White

Type 1C.71.9003.2007 Black

Chrono Touch Basic

Weekly Chronothermostat

- Display touch screen
- 1 contact output 5 A/250 V AC
- Power supply: two alkaline 1.5 V AAA
- 3 programmable temperature levels
- Guided programming
- Principle functions: - Party program
- Calibration
- Manual Timed override with calendar setting
- Multi-function and multi-icon Touch Keys
- Temperature setting range $5 . . .37^{\circ} \mathrm{C}$

- Surface mounting over 3 module wall box

Type 1C.61.9.003.0101 White RAL 9010

Type 1C. 61.9.003.2101 Metallic Anthracite

Chrono Touch Slide

Chronothermostat "touch slide" with weekly function

- Display with ultra white LED backlighting
- 1 contact output 5 A/250 V AC
- Power supply: two alkaline 1.5 V AAA
- Calendar with automatic leap year \& daylight - saving updates
- Summer/Winter switch
- 24 point for temperature setting
- The weekly function allows each day to be set

to, automatic mode, hand mode, or OFF
- Minimum interval setting 15 minutes
- Input for remote control
- Surface mounting over 3 module wall box

Accessories

External temperature sensor Type 01C. 61

The 01C. 61 is used to sense the temperature at a location external to the 1C. 61 chronothermostat. The 1C. 61 can either;
display the external temperature (and regulate to its internal sensor), or display \& regulate to the external sensor temperature. Protection category: IP 54.

27
 (0) \triangle

Type 1C.51.9.003.0007
White

$2 ?$
 -

Type 1C.51.9.003.2007
Black

Chrono Touch Compact

Weekly Programmable thermostat for recessed box

- Display touch screen with ultra white LED backlighting
- 1 contact output $5 \mathrm{~A} / 250 \mathrm{~V}$ AC
- Power supply: two alkaline 1.5 V AAA
- Calendar with automatic leap year \& daylight

- 3 programmable set temperatures
- 2 level security - simple touch screen blocking or full 3-digit PIN lock
- Surface mounting over 3 module wall box
- Compatible with most wall plates on the market:
- ABB - series: Chiara, Mylos
- Ave - series S44
- BTicino - series: Axolute, Light, Light tech, Living, Livinglight, Matix

Adapter type 01C. 51 for BTicino series Livinglight Air

- Gewiss - series Chorus
- Vimar - series: Eikon, Eikon Evo, Idea, Plana, Arkè

Type 1T.51.9.003.0000 White

Type 1T.51.9.003.2000 Black

Thermo Touch Compact

Programmable thermostat for recessed box

- Touch display with bright backlighting
- 1 contact output $5 \mathrm{~A} / 250 \mathrm{~V}$ AC
- Power supply: two alkaline 1.5 V AAA
- Programmable with two operational temperature levels
- Functions: frost protection, pump anti-seizure and calibration functions
- Remote control input to change temperature or for switching On/Off
- Surface mounting over 3 module wall box
- Compatible with most wall plates on the market:
- ABB - series: Chiara, Mylos
- Ave - series S44
- BTicino - series: Axolute, Light, Light tech, Living, Livinglight, Matix Adapter type 01C. 51 for BTicino series Livinglight Air
- Gewiss - series Chorus
- Vimar - series: Eikon, Eikon Evo, Idea, Plana, Arkè

Type 1T.31.9.003.0000 White

Type 1T.31.9.003.2000 Black

Thermo DuoSet
Digital room thermostat

- 1 contact output 5 A/250 V AC
- Power supply: two alkaline 1.5 V AAA
- Independently set temperatures for Day and Night
- Functions: OFF (with Frost protection)/Summer/Winter
- Surface mounting over 3 module wall box

Type 1T.41.9.003.2000 Black

Type 1T.41.9.003.0000 White

Thermo FastSet

Room thermostat

- 1 contact output 5 A/250 V AC
- Power supply: two alkaline 1.5 V AAA
- Temperature regulation $(+5 \ldots+30)^{\circ} \mathrm{C}$
- Functions: OFF (with Frost protection)/Summer/Winter
- Programming: Day/Night (set-back by $-3^{\circ} \mathrm{C}$)
- Surface mounting over 3 module wall box

CHRONOTERMOSTATS

DIGITALTHERMOSTATS

Wiring diagram - Single pole relay Common supply to relay coil and load

Type 20.21

- 1 NO, 16 A 250 V AC
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

Type	Number of steps	Sequence	
		1°	2°
20.21	2	1^{1}	4

Wiring diagram - Single pole relay Low voltage command circuit

Wiring diagram - Single pole relay - Common supply to relay coil and load with illuminated push buttons

Module Type 026.00 for use with illuminated push buttons
Sealed construction, 7.5 cm insulated flexible wire termination.
This module is necessary when using between 1 and a maximum of 15 illuminated push buttons in the coil circuit (Each 1.5 mA max, 230 V AC). It must be connected in parallel to the coil of the relay.

Wiring diagram - 2 pole relay Common supply to relay coil and load

Type 20.22/23/24/26/28

- 2 NO, 16 A 250 V AC
- 1 NO + 1 NC, 16 A 250 V AC (20.23 only)
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

Type	Number of steps	Sequence			
		$1{ }^{\circ}$	2°	3°	4°
20.22	2	$)^{1} 1$	44		
20.23	2	$1^{1} 4$	41		
20.24	4	$)^{1}{ }^{1}$	44	114	$4{ }^{\prime}$
20.26	3	$1^{1} 1$	$4{ }^{1}$	44	
20.27	3	$1^{1} 1^{\prime}$	44	41^{1}	
20.28	4	$)^{\prime}{ }^{\prime}$	$4{ }^{1}$	$\left.)^{\prime}\right)^{\prime}$	114

Wiring diagram - 2 pole relay
Low voltage command circuit

Wiring diagram - 2 pole relay - Common supply to relay coil and load with illuminated push buttons

Accessories

Module for use with illuminated push button Type 026.00
Sealed construction, 7.5 cm insulated flexible wire termination. This module is necessary when using between 1 and a maximum of 15 illuminated push buttons in the coil circuit (Each 1.5 mA max, 230 VAC . It must be connected in parallel to the coil of the relay.

Type 22.32
Type $\mathbf{2 2 . 3 2}$ with Auxiliary contact module
Options: -2 NO or $1 \mathrm{NO}+1$ NC or $2 \mathrm{NC}, 25 \mathrm{~A} 250 \mathrm{~V}$ AC

- 12; 24; 48; 60; 120; 230 V AC/DC
- without selector
- 35 mm rail (EN 60715) mount

Accessories

Auxiliary contact module Type 022.33

Type 022.35

$1 \mathrm{NO}+1 \mathrm{NC} 6 \mathrm{~A}$

Type 22.34
Options: -4 NO or $3 \mathrm{NO}+1 \mathrm{NC}$ or $2 \mathrm{NO}+2 \mathrm{NC}, 25 \mathrm{~A} 250 \mathrm{~V} \mathrm{AC}$

- 12; 24; 48; 60; 120; 230 V AC/DC
- without selector
- 35 mm rail (EN 60715) mount

Accessories

Auxiliary contact module Type 022.33

Type 022.35

Type 22.44

- 4 NO, 3 mm contact gap (or $3 \mathrm{NO}+1 \mathrm{NC}$ or $2 \mathrm{NO}+2 \mathrm{NC}$)
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

Accessories

Auxiliary contact module Type 022.63

Type 022.65

104

Type 22.64
Specifically intended: for high inrush current loads

- $4 \mathrm{NO}, 3 \mathrm{~mm}$ contact gap (or $3 \mathrm{NO}+1 \mathrm{NC}$ or $2 \mathrm{NO}+2 \mathrm{NC}$)
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

Accessories
Auxiliary contact module
Type 022.63
Type 022.65

$1 \mathrm{NO}+1 \mathrm{NC} 6 \mathrm{~A}$

Type	Number of steps	Sequence	
		2°	
26.01	2	1^{1}	4

Type 26.01

- 1 NO, 10 A 250 V AC
- Supply voltage: AC
- Panel mount

Wiring diagram - single pole relay
Common supply to relay coil and load

Wiring diagram - Single pole relay
Low voltage AC command circuit
L

Wiring diagram - Single pole relay
Low voltage DC command circuit

Wiring diagram - Single pole relay Common supply to relay coil and load with illuminated push buttons

L

Accessories
Module for use with illuminated push button Type 026.00
Sealed construction, 7.5 cm insulated flexible wire termination.
This module is necessary when using between 1 and a maximum of 15 illuminated push buttons in the coil circuit (Each 1.5 mA max, 230 V AC). It must be connected in parallel to the coil of the relay.

Type 26.02/03/04/06/08

- 2 NO, 10 A 250 V AC
- 1 NO + 1 NC, 10 A 250 V AC (26.03)

Type	Number of steps	Sequence			
		$1{ }^{\circ}$	2°	3°	4°
26.04	4	$1^{1} 1^{1}$	44	114	$4{ }^{\prime}$
26.06	3	$\left.\left.\right\|^{\prime}\right\|^{\prime}$	$1 / 4$	44	
26.08	4	$1^{\prime} 1^{1}$	41	$1^{\prime} 1^{\prime}$	$11 /$

- Supply voltage: AC
- Panel mount

Wiring diagram - 2 pole relay
Common supply to relay coil and load

Wiring diagram - 2 pole relay

Wiring diagram - 2 pole relay Common supply to relay coil and load with illuminated push buttons

Accessories
Module for use with illuminated push button Type 026.00
Sealed construction, 7.5 cm insulated flexible wire termination.
This module is necessary when using between 1 and a maximum of 15 illuminated push buttons in the coil circuit (Each 1.5 mA max, 230 V AC). It must be connected in parallel to the coil of the relay.

Type	Number of steps	Sequence	
		2°	
27.01	2	1^{\prime}	4

Type 27.01

Connect up to 24 illuminated push

 buttons with the addition of module- 1 NO, 10 A 230 V AC
- Supply voltage: AC
- Panel mount

Wiring diagram - Single pole relay Common supply to relay coil and load

Wiring diagram - single pole relay Common supply to relay coil and load with illuminated push buttons

Accessories
 Module for illuminated push buttons

 Type 027.00This module is necessary if using up to a maximum of 24 illuminated push buttons (1 mA max, 230 VAC) in the switching input circuit. It must be plugged directly into the relay.

Type 27.05/06
Connect up to 24 illuminated push buttons with the addition of module

- 2 NO, 10 A 230 V AC
- Supply voltage: AC
- Panel mount

Wiring diagram - 2 pole relay Common supply to relay coil and load

Type	Number of steps	Sequence			
		$1{ }^{\circ}$	2°	3°	4°
27.05	4	v^{\prime}	14	4	44
27.06	3	$\nu^{\prime}{ }^{\prime}$	$)^{1} 4$	44	

Wiring diagram - 2 pole relay
Common supply to relay coil and load with illuminated push buttons

Type 27.21 EVO

Connect up to 15 illuminated push buttons (without additional module) - incorporates coil power limiter to permit continuous coil energisation

- 1 contact, 10 A 230 V AC
- Supply voltage: AC
- Panel mount

Type	Number of steps	Sequence	
		2°	
27.21	2	1^{1}	4

Type 27.25 EVO and 27.26 EVO Connect up to 15 illuminated push buttons (without additional module) - incorporates coil power limiter to permit continuous coil energisation - 2 NO, 10 A 230 V AC

- Supply voltage: AC
- Panel mount

Type	Number of steps	Sequence			
		$1{ }^{\circ}$	2°	3°	4°
27.25	4	v^{\prime}	14	4	44
27.26	3	v^{\prime}	14	44	

Type 4C.P2

- 2 CO, 8 A 250 V AC
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

Accessories

8-way jumper link Type 097.58

2-way jumper link Type 097.52

2-way jumper link Type 097.42

8-way jumper link Type 095.18

Marker tag holder Type 097.00

114

Push-in terminals
Type 48.P5

- 2 CO, 8 A 250 V AC
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

Accessories

8-way jumper link Type 097.58

2-way jumper link Type 097.52

2-way jumper link Type 097.42

8-way jumper link Type 095.18

Marker tag holder Type 097.00

Sheet of marker tags (48 tags)
CEMBRE'S Thermal transfer printers, Type 060.48

Type 58.P4

- 4 CO, 8 A 250 V AC
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

Accessories

8-way jumper link Type 097.58

2-way jumper link Type 097.52

2-way jumper link Type 097.42

6-way jumper link Type 094.56

Marker tag holder Type 097.00

Sheet of marker tags (48 tags)
CEMBRE'S Thermal transfer printers, Type 060.48

COIL

DC

Type 70.11 - Single-phase ($220 . .240 \mathrm{~V}$) voltage monitoring:

- Undervoltage
- Overvoltage
- Window mode (overvoltage + undervoltage)
- Voltage fault memory selectable
- 1 CO, 10 A 250 V AC
- Supply voltage: AC
- 35 mm rail (EN 60715) mount

Front view: function selector and regulators

Type 70.31 - Three-phase ($380 . . .415 \mathrm{~V}$) voltage monitoring:

- Undervoltage
- 1 CO, 6 A 250 V AC
- Overvoltage
- Window mode (overvoltage + undervoltage)
- Supply voltage: AC
- 35 mm rail (EN 60715) mount

Front view: function selector and regulators

Type 70.41 - Three-phase ($380 . . .415 \mathrm{~V}$, with or without neutral) voltage monitoring:

- Window mode (overvoltage + undervoltage)
- Phase loss
- Phase rotation
- 1 CO, 6 A 250 V AC
- Asymmetry
- Supply voltage: AC
- Neutral loss selectable
- 35 mm rail (EN 60715) mount

Front view: function selector and regulators

Type 70.42 - Three-phase ($380 . . .415 \mathrm{~V}$, with neutral) voltage monitoring:

- Undervoltage
- Overvoltage
- Window mode (overvoltage + undervoltage)
- Phase loss
- Phase rotation
- Asymmetry
- Neutral loss selectable

Front view: function selector and regulators

Type 70.61
Three-phase (208... 480 V) voltage monitoring:

- Phase loss
- Phase rotation
- 1 CO, 6 A 250 V AC
- Supply voltage: AC
- 35 mm rail (EN 60715) mount

Type 70.62

Three-phase (208... 480 V) voltage monitoring:

- Phase loss
- Phase rotation
- 2 CO, 8 A 250 V AC
- Supply voltage: AC
- 35 mm rail (EN 60715) mount

Type 72.01
Adjustable sensitivity

- 1 CO, 16 A 250 V AC
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

Functions
FL = Level control by Filling, Long (7sec) run-on delay.
EL = Level control by Emptying, Long (7sec) run-on delay
FS = Level control by Filling, Short (0.5 sec) run-on delay
ES = Level control by Emptying, Short (0.5 sec) run-on delay.

Wiring diagram with 2 electrodes
(Example: control by Emptying. See page 125)

Type 72.11
Fixed sensitivity

- 1 CO, 16 A 250 V AC
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

Functions
$\mathrm{F}=$ Level control by Filling, Z1-Z2 open. Run-on time fixed at 1 sec .
$\mathrm{E}=$ Level control by Emptying, Z1-Z2 linked.
Run-on time fixed at 1 sec .

Wiring diagram with 3 electrodes
(Example: control by Filling. See page 124)

Wiring diagram with 2 electrodes
(Example: control by Emptying.
See page 125)

Filling functions

Example with 3 electrodes.

Example with 2 electrodes.

Emptying functions

Example with 3 electrodes.

Example with 2 electrodes.

72 Series - Level control relays for conductive liquids

Type 072.01.06-Cable length: $6 \mathrm{~m}\left(1.5 \mathrm{~mm}^{2}\right)$
Type 072.01.15 - Cable length: $15 \mathrm{~m}\left(1.5 \mathrm{~mm}^{2}\right)$
Suspended electrode for conductive liquids, complete with cable.
Suitable for level monitoring in wells and reservoirs not under pressure. All materials used are compatible with food processing applications.

Type 072.11 - Floor water sensor,
designed for the detection and reporting of the presence of floor surface water.

Type 072.51 - Electrode holder with two pole connector, one connected directly to the electrode and the second connected to the grounded installation thread. Suitable for metal tank with G3/8" linkage.

Type 072.02.06
Cable length (blue colour): $6 \mathrm{~m}\left(1.5 \mathrm{~mm}^{2}\right)$ Electrode for swimming pools with high levels of chlorine, or in salt-water pools with high levels of salinity.

Type 072.31
Suspended electrode

Type 072.53 Electrode holder with three poles

(MI) Function example

This shows the 72.42 Priority change relay working in conjunction with a single 72.01 level controller. Under normal conditions the liquid level is expected to remain within the range shown as Min to Max. In this case the function of the 72.42 will be to alternate the duty between both pumps, to even wear across both pumps. There is no provision to run both pumps simultaneously.
72.01.8.240.0000
72.42.0.230.0000

(ME) Function example
This shows the 72.42 Priority change relay working in conjunction with two 72.01 level controllers. Under normal conditions the liquid level is expected to remain within the range shown as Min to Max. In this case the function of the 72.42 will be to alternate the duty between both pumps, to even wear across both pumps. Should the liquid level rise above the Alarm level then the function of the 72.42 will call for the simultaneous operation of both pumps, by virtue of the signal to terminal B3 from the Alarm/Low level controller. Note: due to the low level of 72.42 control signals, it is suggested to use level controller 72.01.8.240.5002 because of its superior low load switching capability.

Type 72.42

- 2 independent NO output, 12 A 250 V AC
- Supply voltage: (110...240)V and 24 V AC/DC
- 35 mm rail (EN 60715) mount

Functions

(MI) Outputs alternate on successive applications of supply voltage

- Application of the supply voltage to A1-A2 forces just one output contact to close, but the contact that closes will alternate between 11-14 and 21-24 on each successive application of the supply - ensuring even wear across both motors.
- The other output contact can be forced closed by the closure of either S1 or S2 - but to limit high current surges the other motor cannot start within T seconds of the first motor.

(ME) Outputs alternate according to control signal
- The supply voltage is permanently applied to A1-A2.

When closed, S1 forces just one output contact to close. The contact that closes will alternate between 11-14 and 21-24 on each successive S1 closure - ensuring even wear across both motors.

- If closed, S2 forces both output contacts to close (irrespective of S1). However, to limit high current surges, both motors cannot start within T seconds of each other.

(M2) Output 2 (21-24) only
- Supply permanently applied to A1-A2.
- Closure of either S1 or S2 will close output contact 2 (21-24). Use when load 1 (11-14) is out of service.

(M1) Output 1 (11-14) only

- Supply permanently applied to A1-A2.
- Closure of either S1 or S2 will close output contact 1 (11-14). Use when load 2 (21-24) is out of service.

Type 72.A1

- Float switch with 2 watertight chambers, for grey water pumping and drainage systems
- Counterweight (300 g) with cable grip, included

Type 72.A1.0000.xx02
Float switch suitable for level regulation of potable water and liquid foodstuffs
Manufactured from metal and plastics certified to ACS (Attestation de Conformitè Sanitaire).

- 1 CO 20 A 250 V AC
- Protection category: IP 68

When black and brown wires are used, the circuit opens when the float is down and closes when the float in up. In this case the blue/grey wire must be insulated.

When black and blue/grey wires are used, the circuit opens when the float is up and closes when the float in down. In this case the brown wire must be insulated.

Type 72.B1

- Float switch with 3 watertight chambers, for dirty water systems, drainage plants and pumping stations
- Supplied with fixing kit
- 1 CO 20 A 250 V AC
- Protection category: IP 68

Emptying
function

When black and brown wires are used, the circuit opens when the float is down and closes when the float in up. In this case the blue/grey wire must be insulated.

When black and blue/grey wires are used, the circuit opens when the float is up and closes when the float in down. In this case the brown wire must be insulated.

Example of single-phase connection

Example of three-phase connection
(with $3 \times 77.01 .8 .230 .8051$)

Type 78.12... 2400
24 V DC, 12 W output

Type 78.12... 1200
12 V DC, 12 W output

- Supply voltage: (110...240)V AC 220 V DC not polarized
- 35 mm rail (EN 60715) mount

78 Series - Switch mode power supplies

Type 78.36

- 24 V DC, 36 W output
- Supply voltage: (110...240)V AC, 220 V DC not polarized
- 35 mm rail (EN 60715) mount

Type 78.50

Type 78.51

Suitable for
battery charging
12 V DC, 50 W output

Type 78.60

Type 78.61
Suitable for battery charging

24 V DC, 60 W output

- Supply voltage: (110...240)V AC

220 V DC not polarized

- 35 mm rail (EN 60715) mount

Type 7E.23.8.230.0000 kWh + instantaneous W, V \& A
Type 7E.23.8.230.0001 kWh only
Type 7E.23.8.230.0030 MID certified with M-Bus integrated interface
Type 7E.23.8.230.0210 MID certified with Modbus RS-485 integrated interface

- Nominal current 5 A (32 A Maximum)
- 1-phase 230 V AC
-17.5 mm width
- 35 mm rail (EN 60715) mount

Accessories

Terminal cover Type 07E. 13

For the tamper-proof lead seal use 2 terminal covers.

Type 7E.23.8.230.0000
Type 7E.23.8.230.0001

Type 7E.23.8.230.0030

Type 7E.23.8.230.0210

Type 7E.46.8.400.0002 kWh + instantaneous W, V \& A
Type 7E.46.8.400.0032 MID certified with M-Bus integrated interface
Type 7E.46.8.400.0212 MID certified with Modbus RS-485 integrated interface

- Nominal current 10 A (65 A Maximum)
- 3-phase
- Single and Dual tariff (Day and Night)
- 70 mm width
- 35 mm rail (EN 60715) mount

Accessories
Terminal cover
Type 07E. 16

For the tamper-proof lead seal use 4 terminal covers.

$$
\mathrm{R}_{\mathrm{T} 1, \mathrm{~T} 2}=\text { Tariff switching equipment }
$$

Type 7E.46.8.400.0002

Type 7E.46.8.400.0032 Type 7E.23.8.230.0212

Type 7E.56.8.400.0000 kWh + instantaneous W, V \& A
Type 7E.56.8.400.0030 MID certified with M-Bus integrated interface
Type 7E.56.8.400.0210 MID certified with Modbus RS-485 integrated interface

- Nominal current 5 A (6 A Maximum)
- 3-phase
- Usable with current transformer up to 1,500 A
-70 mm width
- 35 mm rail (EN 60715) mount

Accessories

Terminal cover

Type 07E. 16

For the tamper-proof lead seal use 4 terminal covers.

Type 7E.12.8.230.0002

- Nominal current 10 A (25 A Maximum)
- 1-phase 230 V AC
- 35 mm width
- 35 mm rail (EN 60715) mount

Accessories
Terminal cover
Type 07E. 16

For the tamper-proof lead seal use 2 terminal covers.

Type 7E. 13

- Nominal current 5 A (32 A Maximum)
- 1-phase 230 V AC
-17.5 mm width
- 35 mm rail (EN 60715) mount

Accessories

Terminal cover Type 07E. 13

For the tamper-proof lead seal use 2 terminal covers.

Type 7E. 16

- Nominal current 10 A (65 A Maximum)
- 1-phase 230 V AC
- 35 mm width
- 35 mm rail (EN 60715) mount

Accessories
Terminal cover
Type 07E. 16

For the tamper-proof lead seal use 2 terminal covers.

Type 7E.36.8.400.0000

- Nominal current 10 A (65 A Maximum)
- 3-phase
- 70 mm width
- 35 mm rail (EN 60715) mount

Accessories

Terminal cover

Type 07E. 16

For the tamper-proof lead seal use 4 terminal covers.

Type 7E.36.8.400.0002

- Nominal current 10 A (65 A Maximum)
- 3-phase
- Dual tariff (Day and Night)
- 70 mm width
- 35 mm rail (EN 60715) mount

Accessories

Terminal cover

Type 07E. 16

For the tamper-proof lead seal use 4 terminal covers.
$\mathrm{R}_{\mathrm{T} 1, \mathrm{~T} 2}=$ Tariff switching equipment

Type 7P.02.8.260.1025 - SPD Type 1+2 For single phase TT and TN-S system. Varistor + GDT protection L-N + GDT protection N-PE.

According to EN 61 643-11.

- Visual fault and remote contact fault signalling varistor/GDT status, N-PE GDT presence
- Upside down mounting possible
- Replaceable modules
- Possibility of serial connection (V-shape)
- 35 mm rail (EN 60715) mount

TT-single phase system - SPD up-stream of RCD

Type 7P.03.8.260.1025-SPD Type 1+2 For three phase TN-C system without Neutral (PEN conductor).
Varistor + GDT protection L1, L2, L3-PEN.
According to EN 61 643-11.

- Visual fault and remote contact fault signalling varistor/GDT status
- Upside down mounting possible
- Replaceable modules
- Possibility of serial connection (V-shape)
- 35 mm rail (EN 60715) mount

TN-C three phase system - SPD up-stream of RCD

Type 7P.04.8.260.1025-SPD Type 1+2 For three phase TT and TN-S system with Neutral. Varistor + GDT protection L1, L2, L3-N + spark gap protection N-PE

According to EN 61 643-11.

- Visual fault and remote contact fault signalling varistor/GDT status, N-PE GDT presence
- Upside down mounting possible
- Replaceable modules
- Possibility of serial connection (V-shape) example on next page
- 35 mm rail (EN 60715) mount

TT three phase system - SPD up-stream of RCD

TT three phase system - SPD up-stream of RCD
Wiring diagrams "V-shape" (fuse max $=125$ A)

Type 7P.05.8.260.1025 - SPD Type 1+2 For three phase TN-S system with Neutral. Varistor + GDT protection L1, L2, L3-N + varistor + GDT protection N-PE

According to EN 61 643-11.

- Visual fault and remote contact fault signalling varistor/GDT status
- Upside down mounting possible
- Replaceable modules
- Possibility of serial connection (V-shape)
- 35 mm rail (EN 60715) mount

TT or TN-S three phase system - SPD up-stream of RCD

Installation examples

Type 7P.21.8.xxx.x0xx SPD Type 2, unipolar Varistor protection +/- or L/N (GND);
-/+ or GND (L/N)

TT - TN-S single phase system
SPD down-stream of RDC

Note: suggested RCD type S

Type 7P.12.8.275.1012 - SPD Type 1+2 with high performance "Low Up"
Varistor protection L-N + spark gap protection N-PE for single phase systems

Type 7P.22.8.275.x020-SPD Type 2
Varistor protection L-N + spark gap protection N-PE

According to

EN 61 643-11.

- For single phase system with Neutral
- Replaceable modules
- Visual and optional remote connector for signalling of the varistor status
- 35 mm rail (EN 60715) mount

Type 7P.13.8.275.1012-SPD Type 1+2 with high performance "Low Up" Varistor protection L1, L2, L3-PEN

Type 7P.23.8.275.x020-SPD Type 2 Varistor protection L1, L2, L3-PEN

According to EN 61 643-11

- For three phase system without Neutral (PEN conductor)
- Replaceable modules
- Visual and optional remote connector for signalling of the varistor status - 35 mm rail (EN 60715) mount

TN-C three phase system - SPD up-stream
of overcurrent protection

Type 7P.14.8.275.1012-SPD Type 1+2 with high performance "Low Up" Varistor protection L1, L2, L3-N + spark gap protection N-PE
Non replaceable high discharge current spark gap

Type 7P.24.8.275.x020-SPD Type 2
Varistor protection L1, L2, L3 + spark gap protection N-PE Replaceable modules

According to EN 61 643-11. - For three phase system with Neutral

- Visual and remote signalling of varistor status
- 35 mm rail (EN 60715) mount

Type 7P.15.8.275.1012-SPD Type 1+2 Varistor protection L1, L2, L3,N-PE

Type 7P.25.8.275.x020-SPD Type 2 Varistor protection L1, L2, L3, N-PE

According to EN 61 643-11

- For three phase system with Neutral
- Visual and remote signalling of varistor status
- Replaceable varistor modules
- 35 mm rail (EN 60715) mount

TN-S three phase system -
SPD down-stream of overcurrent protection

Type 7P.23.9.750.x020 for 750 V DC photovoltaic systems*

Type 7P.23.9.000.x015 for 1020 V DC photovoltaic systems*

Type 7P.23.9.200.1015 for 1200 V DC photovoltaic systems*

SPD Type 2 - According to EN 50 539-11*

- Replaceable varistor modules
- Visual and optional remote connector for signalling of the varistor status
- 35 mm rail (EN 60715) mount

Type 7P.03.9.000.1012 SPD Type 1+2
for 1000 V DC photovoltaic systems*

- For systems with LPS
- Replaceable varistor modules
- Visual and optional remote connector for signalling of the varistor status
- 35 mm rail (EN 60715) mount

Installation examples - photovoltaic

Type 7P.26.9.420.1020 SPD Type 2 for 420 V DC photovoltaic systems*

Type 7P.26.9.000.x015
SPD Type 2
for 1020 V DC photovoltaic systems*

According to EN 50 539-11*

- Replaceable modules
- Visual and remote signalling of varistor status
- 35 mm rail (EN 60715) mount

TT or TN-S single phase system incorporated in socket outlet

Type 7P.32.8.275.2003 SPD Type 3
Provides easy additional surge protection for existing 230 V sockets

- Protects electric and electronic equipment against pulse overvoltage (example: TV, Hi-Fi, PC ...)
- Acoustical (buzzing) signalling of varistor fault
- Combined varistor + spark-gap protection (avoiding earth leakage current)
- Small size
- For incorporation within socket outlets

Type 7P.37.8.275.1003 - SPD Type 3 for TT and TN-S system (with Neutral)

- L-N/N-PE protection
- Permits serial connection for optimized load protection up to 16 A
- Remote signaling of varistor status by integral change-over relay contact
- 35 mm rail (EN 60715) mount

TT or TN-S single phase system -
SPD down-stream of RCD
Serial connection

TT or TN-S single phase system SPD down-stream of RCD Serial connection + BUS line

TT, TN-S single phase system parallel connection

Paralel Connection
F1 $>16 \mathrm{AgL} / \mathrm{gG}$

$\mathrm{F} 2=16 \mathrm{AgL} / \mathrm{gG}$

Examples where: Timing function initiated
by the application of supply voltage

Type 80.01/11/21/61

- 1 CO, 16 A 250 V AC
- 1 CO, 8 A 250 V AC (80.61 only)
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

Functions

Type 80.01, 80.11

(AI) On-delay
Apply power to timer. Output contacts transfer after preset time has elapsed. Reset occurs when power is removed.

Type 80.01, 80.21

(DI) Interval

Apply power to timer. Output contacts transfer immediately. After the preset time has elapsed, contacts reset.

Type 80.01

(SW) Symmetrical flasher (starting pulse on)

Apply power to timer. Output contacts transfer immediately and cycle between ON and OFF for as long as power is applied. The ratio is 1:1 (time on $=$ time off).

Type 80.61

(BI) Power off-delay (True off-delay)

Apply power to timer (minimum 300ms). Output contacts transfer immediately. Removal of power initiates the preset delay, after which time the output contacts reset.

Timing function initiated by
start signal to terminal B1

Type 80.01/41/91

- 1 CO, 16 A 250 V AC
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

Functions
(CE) On- and off-delay with control signal
(Bower is permenently applied to the timer. Closing the Signal Switch (S) initiates the
preset delay, after which time the output contacts transfer. Opening the Signal switch
initiates the same preset delay, after which time the output contacts reset.

Type 80.71

Multi-function \& Multi-voltage

Solid State output timer

- 1 NO, 1 A (24...240)V AC/DC
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

Timing function initiated by the application of the supply voltage

Timing function initiated by start signal to terminal B1

L

Functions

Timing function initiated by the application of supply voltage

Type 80.91
 Asymmetrical recycling timer ON start
 - 1 CO, 16 A 250 V AC
 - Supply voltage: AC or DC
 - 35 mm rail (EN 60715) mount

Functions
$\mathrm{U}=$ Supply voltage \quad = Output contact

(LI) Asymmetrical flasher (starting pulse on)

Apply power to timer. Output contacts transfer immediately and cycle between ON and OFF for as long as power is applied.
The ON (T1) and OFF (T2) times are independently adjustable.

Timing function initiated by the application of supply voltage

Type 80.82

Star-Delta timer

- 2 NO, 6 A 250 V AC
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

Functions
$\mathrm{U}=$ Supply voltage \quad = Output contact

(SD) Star-delta

Apply power to timer. The star contact ($\boldsymbol{\lambda}$) closes immediately. After preset delay has elapsed the star contact (λ) resets. After a further transfer time variable from ($0.05 \ldots 1$) s the delta contact (Δ) closes and remains in that position, until reset on power off.

L

Multi-function and multi-voltage timer

- 1 CO, 16 A 250 V AC
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

Time range	(0.1...1)s	(1...10)s	(10...60)s	(1...10)min	(10...60)min	(1...10)h
setting	1	1	1	1	1	1
	2	2	2	2	2	2
	3	3	3	3	3	3
	4	4	4	4	4	4
	5	5	5	5	5	5
	6	6	$6 \square$		6	6

NOTE: time range and function must be set before energising the timer.

RESET function (R)

Supply START; ON delay function Closing the external reset switch immediately resets the timer. Opening the reset switch re-initiates the timing function.

Signal START; ON pulse function.
Closing the external reset switch terminates the interval time and resets the timer. To re-start, it is necessary to open the reset switch, before closing the signal START contact.

Application of the supply voltage initiates timing

Remote Start contact initiates timing

Function

$$
\mathrm{U} \text { = Supply voltage }
$$

$工=$ Output contact

(AI) On-delay

Apply power to timer. Output contacts transfer after preset time has elapsed. Reset occurs when power is removed.

(DI) Interval

Apply power to timer. Output contacts transfer immediately. After the preset time has elapsed, contacts reset.

(SW) Symmetrical flasher (starting pulse on)

Apply power to timer. Output contacts transfer immediately and cycle between ON and OFF for as long as power is applied. The ratio is 1:1 (time on = time off).

(SP) Symmetrical flasher (starting pulse off)

Apply power to timer. First transfer of contact occurs after preset time has elapsed. The timer now cycles between OFF and ON as long as power is applied.
The ratio is $1: 1$ (time on = time off).
Function $\quad \mathrm{U}=$ Supply voltage $\mathrm{S}=$ External Start

(BE) Off-delay with control signal

Power is permenently applied to the timer. The output contacts transfer immediately on closure of the Signal Switch (S). Opening the Signal Switch initiates the preset delay, after which time the output contacts reset.

(DE) Interval with control signal on

Power is permenently applied to the timer. On momentary or maintained closure of Signal Switch (S), the output contacts transfer, and remain so for the duration of the preset delay, after which they reset.

(EE) Interval with control signal off

Power is permenently applied to the timer. On opening of the Signal Switch (S) the output contacts transfer, and remain so for the duration of the preset delay, after which they reset.

Digital Timer "Two in one": two totally independent programmable channels, in a single product
2 CO 16 A
Type 84.02.0.230.0000

- Nominal voltage: 110... 240 V AC/DC non-polarized)

Type 84.02.0.024.0000

- Nominal voltage: 12... 24 V AC/DC non-polarized)

Programmable from a smartphone using
NFC (Near Field Communication) connectivity.

Function

$$
\mathrm{U}=\text { Supply voltage }
$$

(OFF) Relay OFF

The output contact stays permanently open.

(ON) Relay ON

The output contact stays permanently closed.
(AI) On-delay
Apply power to timer. Output contact transfers after preset time has elapsed.
Reset occurs when power is removed.

(DI) Interval

Apply power to timer. Output contact transfers immediately.
After the preset time has elapsed, contact resets

(GI) Pulse delayed

Apply power to timer. Output contact transfers after time T1 has elapsed.
Reset occurs after T2 time.

(LI) Asymmetrical flasher (starting pulse on)

Apply power to timer. Output contact transfers immediately and cycle between ON and OFF for as long as power is applied. The ON and OFF times are independently adjustable.
(PI) Asymmetrical flasher (starting pulse off)
Apply power to timer. Output contact transfers after time T1 has elapsed and cycle between OFF and ON for as long as power is applied. The ON and OFF times are independently adjustable.

(SW) Symmetrical flasher (starting pulse on)

Apply power to timer. Output contact transfers immediately and cycle between ON and OFF for as long as power is applied. The ratio is 1:1 (time on = time off).

(SP) Symmetrical flasher (starting pulse off)

Apply power to timer. First transfer of contact occurs after preset time has elapsed. The timer now cycles between OFF and ON as long as power is applied. The ratio is 1:1 (time on = time off).
Function $\quad \mathrm{U}=$ Supply voltage $\quad \mathrm{S}=$ External Start

(AE) On-delay with control signal

Power is permanently applied to the timer. Closing the Signal Switch (S) initiates the preset delay, after which the output contact transfers and remains so until the power is removed.

(BE) Off-delay with control signal

Power is permanently applied to the timer.
The output contact transfers immediately on closure of the Signal Switch (S).
Opening the Signal Switch initiates the preset delay, after which the output contact resets.

(CE) On- and off-delay with control signal

Power is permanently applied to the timer.
Closing the Signal Switch (S) initiates the preset delay, after which the output contact transfers. Opening the Signal switch initiates the same preset delay, after which the output contact resets.

(DE) Interval with control signal on

Power is permanently applied to the timer. On momentary or maintained closure of Signal Switch (S), the output contact transfers, and remain so for the duration of the preset delay, after which it resets

(EE) Interval with control signal off

Power is permanently applied to the timer. On opening of the Signal Switch (S) the output contact transfers, and remain so for the duration of the preset delay, after which it resets

(FE) Interval with control signal on and off

Power is permanently applied to the timer. Both the opening and the closing of the Signal Switch (S) initiates the transfer of the output contact (or extends the time). In both instances the contact resets after the preset delay has elapsed

Function

(SS) Monostable controlled by Signal switch

The output contact follows the status of Signal Switch (S).

(PS) Monostable controlled by Pause switch

The output contact follows the status of Pause Switch (P).

(SHp) "Shower" (off-delay with control signal and pause signal)

Power is permanently applied to the timer. The output contact transfers immediately on closure of the Signal Switch (S). Opening the signal switch initiates the preset delay, after which the output contact resets. Closure of the Pause Switch (P) will immediately halt the timing process, but the elapsed time will be retained. During the pause, the output contact will be open. On opening of the Pause Switch, timing resumes from the retained value and the output contact will take the previous condition.

(17) finder

FINDER SpA
Via Drubiaglio 14 I-10040 ALMESE (TO)
Tel. +390119346211
Fax +39 0119359079
export@findernet.com

